Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Masahiro Yodoshi, Mamiko Odoko and Nobuo Okabe*

Faculty of Pharmaceutical Sciences, Kinki University, Kowakae 3-4-1, Higashiosaka, Osaka 577-8502, Japan

Correspondence e-mail:
okabe@phar.kindai.ac.jp

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.045$
$w R$ factor $=0.086$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Aqua(di-2-pyridylamine- $\kappa^{2} N^{2}, N^{2 \prime}$)(D-gluconato$\left.\kappa^{2} O, O^{\prime}\right)$ copper(II) trihydrate

In the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{7}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the Cu atom has a distorted square-pyramidal geometry coordinated by two O atoms of a D-gluconate ligand, two N atoms of a bidentate di-2-pyridylamine ligand and a water O atom. The deprotonated α-hydroxyl and carbonate O atoms of the D -gluconate ligand form a five-membered chelate ring with the Cu atom. The crystal structure is stabilized both by all of the available hydrogen bonds and by $\pi-\pi$ stacking interactions between di-2-pyridylamine ligands.

Comment

The interaction of a sugar with metal ions is very important for the biological properties of carbohydrates, such as the interaction of D-gluconic acid or D-glucono-1,5-lactone with metal ions (Escandar et al., 1996; Tajmir-Riahi, 1990). The crystal structures of metal complexes of D-gluconic acid have been reported, for example of $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Pb}^{\mathrm{II}}$ (Lis, 1979, 1984a), $\mathrm{Na}^{\mathrm{I}}, \mathrm{K}^{\mathrm{I}}$ and Rb^{I} (Lis, 1984b; Littleton, 1953; Jeffrey \& Fasiska, 1972). In the present study, the crystal structure of the copper(II) complex, (I), of D-gluconic acid with di-2-pyridylamine (BPA) is reported.

(I)

The molecular structure of (I) (Fig. 1) shows the Cu atom to have a distorted square-pyramidal geometry in which the basal plane is defined by two O atoms of the D -gluconate ligand and two N atoms of the bidentate BPA ligand; a water O atom occupies the apical site of the pyramid. A fivemembered chelate ring, $\mathrm{Cu} 1 / \mathrm{O} 1 / \mathrm{C} 11 / \mathrm{C} 12 / \mathrm{O} 3$, is formed between the Cu atom and the D-gluconate ligand, and a sixmembered chelate ring, $\mathrm{Cu} 1 / \mathrm{N} 1 / \mathrm{C} 5 / \mathrm{N} 2 / \mathrm{C} 6 / \mathrm{N} 3$, between the Cu atom and the BPA ligand.

The two pyridyl rings in the BPA ligand are nearly coplanar, with the interplanar angle being $14.5(2)^{\circ}$. The dihedral angle

Received 11 July 2006 Accepted 26 July 2006
\qquad

Figure 1
The asymmetric unit of (I) with the the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Figure 2
A view of the hydrogen bonding (blue lines) in (I). [Symmetry codes: (i) $-x, y-\frac{1}{2},-z$; (ii) $-x, y+\frac{1}{2},-z+1$; (iii) $-x, y-\frac{1}{2},-z+1$; (iv) $x, y-1, z$; (v) $x, y+1, z$; (vi) $x+1, y, z$.]
between the planes formed by $\mathrm{N} 1 / \mathrm{Cu} 1 / \mathrm{N} 3$ and $\mathrm{O} 1 / \mathrm{Cu} 1 / \mathrm{O} 3$ is 22.3 (2) ${ }^{\circ}$. The atoms $\mathrm{N} 1, \mathrm{~N} 3, \mathrm{O} 1$ and O 3 deviate by 0.180 (4), -0.185 (4), 0.203 (3) and -0.197 (3) A, respectively, from their least-squares plane and the Cu atom lies above this plane
by 0.1923 (5) \AA in the direction of the coordinated water molecule.

The $\mathrm{Cu} 1-\mathrm{O} 1, \mathrm{Cu}-\mathrm{O} 3$ and $\mathrm{Cu} 1-\mathrm{O} 8$ bond lengths (Table 1) are slightly longer than the respective distances of the square-pyramidal copper(II) complex of lactic acid with 1,10-phenanthroline $[1.947$ (4), 1.904 (4) and 2.299 (4) A.; Carballo et al., 2001]. The $\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{Cu} 1-\mathrm{N} 3$ bond lengths are also longer than those in dichloro(BPA)copper(II) [1.948 (6) Å; Spodine et al., 1996].

The carbon chain ($\mathrm{C} 11-\mathrm{C} 16$) of the D-gluconate ligand extends in a nearly planar zigzag form. Atoms O3, O1, C11 and C12 atoms of the D-gluconate ligand lie in almost the same plane, as indicated by the torsion angle of $8.2(6)^{\circ}$ for $\mathrm{O} 1-$ $\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 3$. In most metal-D-gluconate complexes [e.g. $\mathrm{Na}^{\mathrm{I}}, \mathrm{K}^{\mathrm{I}}, \mathrm{Rb}^{\mathrm{I}}$ (Lis, 1984b; Littleton, 1953; Jeffrey \& Fasiska, 1972), $\mathrm{Pb}^{\text {II }}$ (Lis, 1984a) and $\mathrm{Mn}^{\text {II }}$ (Lis, 1979)], both O atoms of the deprotonated α-hydroxyl group and the carboxylate group are coordinated to the metal ions, as found in (I).

The crystal structure is stabilized by all of the available O $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2). There are $\pi-\pi$ stacking interactions between the pyridine rings of BPA ligands [the distance between the centers of gravity of the pyridine rings, $C g 1(\mathrm{~N} 1 / \mathrm{C} 1-\mathrm{C} 5)$ and $C g 2(\mathrm{~N} 3 /$ C6-C10), is 3.76 (7) \AA (McArdle, 1995)], which also stabilize the crystal packing.

Experimental

Equimolar quantities of di-2-pyridylamine (3.8 mg) and copper(II) gluconate (10 mg) were dissolved in a $70 \%(v / v)$ methanol-water mixture (6 ml). The solution was concentrated to $c a 1 \mathrm{ml}$ at 343 K and allowed to evaporate slowly at room temperature. After several weeks, light-blue needles of (I) were obtained from the mother liquor.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{7}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)-\right.$

$$
\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}
$$

$M_{r}=500.96$
Monoclinic, $P 2_{1}$
$a=13.02$ (1) \AA
$b=5.447$ (5) \AA
$c=14.52$ (1) \AA
$\beta=97.34(4)^{\circ}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.576, T_{\text {max }}=0.989$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.086$
$S=0.85$
4365 reflections
294 parameters
H -atom parameters constrained

$$
\begin{aligned}
& V=1021.3(14) \AA^{3} \\
& Z=2 \\
& D_{x}=1.629 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation }^{2} \\
& \mu=1.14 \mathrm{~mm}^{-1} \\
& T=123.0 \mathrm{~K} \\
& \text { Needle, light blue } \\
& 0.40 \times 0.05 \times 0.01 \mathrm{~mm}
\end{aligned}
$$

10058 measured reflections
4365 independent reflections
2251 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0255 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.58 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.55 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& 1792 \text { Friedel pairs } \\
& \text { Flack parameter: }-0.05(2)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.965(3)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$1.985(4)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.932(3)$	$\mathrm{O} 1-\mathrm{C} 11$	$1.271(6)$
$\mathrm{Cu} 1-\mathrm{O} 8$	$2.342(3)$	$\mathrm{O} 2-\mathrm{C} 11$	$1.259(6)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.015(4)$	$\mathrm{O} 3-\mathrm{C} 12$	$1.417(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$84.5(1)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$91.4(2)$
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 3$	$8.2(6)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 16 \cdots \mathrm{O} 2^{\text {i }}$	0.82	1.88	2.693 (6)	173
O5-H17..O3	0.82	1.87	2.606 (5)	148
$\mathrm{O} 6-\mathrm{H} 18 \cdots \mathrm{O} 2^{\text {ii }}$	0.82	2.11	2.908 (5)	164
$\mathrm{O} 7-\mathrm{H} 19 \cdots \mathrm{O} 1^{\text {iii }}$	0.82	1.94	2.716 (6)	158
$\mathrm{O} 8-\mathrm{H} 20 \cdots \mathrm{O} 3^{\text {iv }}$	0.89	1.85	2.723 (5)	166
$\mathrm{O} 8-\mathrm{H} 21 \cdots \mathrm{O} 4$	0.92	1.83	2.740 (6)	168
O9-H22 . O 11	0.90	1.81	2.713 (6)	180
$\mathrm{O} 9-\mathrm{H} 23 \cdots \mathrm{O} 8$	0.96	1.93	2.890 (6)	180
O10-H24..O5	1.00	1.73	2.722 (6)	173
$\mathrm{O} 10-\mathrm{H} 25 \cdots \mathrm{O}^{\text {v }}$	0.91	1.82	2.737 (6)	180
O11-H26 \cdots O10 ${ }^{\text {iii }}$	0.95	1.86	2.807 (6)	179
O11-H27 . . O10	0.93	1.80	2.729 (7)	178
$\mathrm{N} 2-\mathrm{H} 5 \cdots \mathrm{O} 7^{\text {vi }}$	0.86	1.93	2.747 (6)	157

Symmetry codes: (i) $-x, y-\frac{1}{2},-z$; (ii) $-x, y+\frac{1}{2},-z$; (iii) $-x, y-\frac{1}{2},-z+1$; (iv)
$x, y-1, z ;$ (v) $x, y+1, z ;($ vi) $x+1, y, z$.

H atoms were included in the riding-model approximation with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA, \mathrm{O}-\mathrm{H}=0.82-1.00 \AA$, and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Betteridge et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976), ORTEP-3 for Windows (Farrugia, 1997) and ORTEX (McArdle, 1995); software used to prepare material for publication: CrystalStructure.

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Figure 3
A view of the $\pi-\pi$ stacking interaction in (I). $C g 1$ is the centroid of the pyridine ring $\mathrm{N} 1 / \mathrm{C} 1-\mathrm{C} 5$, and $C g 2$ is that of $\mathrm{N} 3 / \mathrm{C} 6-\mathrm{C} 10$.

Carballo, R., Covelo, B., Balvoa, S., Castineiras, A. \& Niclos, J. (2001). Z. Anorg. Allg. Chem. 627, 948-954.
Escandar, G. M., Salas Peregrin, J. M., Gonzalez Sierra, M. \& Martino, D. (1996). Polyhedron, 15, 2251-2261.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Jeffrey, G. A. \& Fasiska, E. J. (1972). Carbohydr. Res. 21, 187-199.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lis, T. (1979). Acta Cryst. B35, 1699-1701.
Lis, T. (1984a). Acta Cryst. C40, 374-376.
Lis, T. (1984b). Acta Cryst. C40, 376-378.
Littleton, C. D. (1953). Acta Cryst. 6, 775-781.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Rigaku/MSC (2005). CrystalStructure. Version 3.7. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spodine, E., Atria, A. M., Baggio, R. \& Garland, M. T. (1996). Acta Cryst. C52, 1407-1410.
Tajmir-Riahi, H. A. (1990). J. Inorg. Biochem. 39, 33-41.

[^0]: © 2006 International Union of Crystallography All rights reserved

